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Four Prototypical Trajectories

Review



• X is a Normal Random Variable: X ~ N(µ, s 2)
§ Probability Density Function (PDF):

§

§

§ Also called “Gaussian”
§ Note: f(x) is symmetric about µ
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Simplicity is Humble

* A Gaussian maximizes entropy for a given mean and variance

Simple. Will generalize
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CDF	of	a	
Normal
F(x)

PDF	of	a	
Normal
f(x)

Density vs Cumulative

f(x) = derivative of probability F(x) = P(X < x)



Probability Density Function

probability 
density at x

the distance to 
the mean

f(x) =
1

�
p
2⇡

e
�(x�µ)2

2�2

a constant

“exponential”

sigma shows up 
twice

N (µ,�2)



Cumulative Density Function

Table of F(z) values in textbook, p. 201 and handout

F (x) = �

✓
x� µ

�

◆

CDF of Standard Normal: A 
function that has been solved 

for numerically

The cumulative 
density function 

(CDF) of any normal

N (µ,�2)



Four Prototypical Trajectories

Great questions!



Four Prototypical Trajectories

68% rule only for Gaussians?



68% Rule?

Only applies to normal

P (µ� � < X < µ+ �) = P
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What is the probability that a normal variable 
has a value within one standard deviation of its mean? 
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68% Rule?
Counter example: Uniform X ⇠ Uni(↵,�)
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(� � ↵)2

12

� =
p
V ar(X)

=
� � ↵p

12

2�

1

� � ↵

↵�

=
1

� � ↵


2(� � ↵)p

12

�

= 0.58

P (µ� � < X < µ+ �)

=
2p
12

=
1

� � ↵


2(� � ↵)p

12

�

= 0.58



Four Prototypical Trajectories

How does python sample from a 
Gaussian?



from random import *

for i in range(10):
mean = 5
std = 1
sample = gauss(mean, std)
print sample

3.79317794179
5.19104589315
4.209360629
5.39633891584
7.10044176511
6.72655475942
5.51485158841
4.94570606131
6.14724644482
4.73774184354

How 
does this 
work?



How Does a Computer Sample Normal?
Inverse	Transform	Sampling

50-5
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CDF	of	the	
Standard	
Normal
�(x)



How Does a Computer Sample Normal?

Further	reading:	Box–Muller	transform

Inverse	Transform	Sampling
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CDF	of	the	
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Step 2: Find the x such that 
�(x) = y

x = ��1(y)



Continuous RV Relative Probability 

x

f(x)

Time to finish pset 3

How much more likely 
are you to complete in 

10 hours than in 5?

X = time to finish pset 3
X ~ N(10, 2) P (X = 10)
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Four Prototypical Trajectories

Imagine you are sitting a test…



• 100 people are given a new website design
§ X = # people whose time on site increases
§ CEO will endorse new design if X ≥ 65 What is P(CEO 

endorses change| it has no effect)?
§ X ~ Bin(100, 0.5). Want to calculate P(X ≥ 65)
§ Give a numerical answer…

Website Testing

P (X � 65) =
100X

i=65

✓
100

i

◆
(0.5)i(1� 0.5)100�i



Normal Approximates Binomial

There is a deep reason for the Binomial/Normal similarity…



Normal Approximates Binomial



Four Prototypical Trajectories

Let’s invent an approximation!



• 100 people are given a new website design
§ X = # people whose time on site increases
§ CEO will endorse new design if X ≥ 65 What is P(CEO 

endorses change| it has no effect)?
§ X ~ Bin(100, 0.5). Want to calculate P(X ≥ 65)

Website Testing
P(

X = 
x)

xE[X] = 50

What is 
variance?



• 100 people are given a new website design
§ X = # people whose time on site increases
§ CEO will endorse new design if X ≥ 65 What is P(CEO 

endorses change| it has no effect)?
§ X ~ Bin(100, 0.5). Want to calculate P(X ≥ 65)

§ Use Normal approximation: Y ~ N(50, 25)

§ Using Binomial: 0018.0)65( »³XP

5125150    – p)np(      – p)     np( np ===

Website Testing

P (Y � 65) = P
�Y � 50

5
>

65� 50

5

�
= P (Z > 3) = 1� �(3) ⇡ 0.0020.0013



P(
X = 

x)

xE[X] = 50

Website Testing
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 Bin(100, 0.5)

 Normal(50, 25)

Continuity Correction

64 65

P (X � 65)

What about 64.9?

⇡ P (Y � 64.5)

⇡ 0.0018

If Y (normal) approximates X (binomial)

66



Continuity Correction

Discrete (eg Binomial) 
probability question

Continuous (Normal) 
probability question

X = 6 5.5 < Y < 6.5

X >= 6 Y > 5.5

X > 6 Y > 6.5

X < 6 Y < 5.5

X <= 6 Y < 6.5

* Note: Binomial is always defined in units of “1”

If Y (normal) approximates X (binomial)



P(X = k)

k

Comparison when n = 100, p = 0.5



X ~ Bin(n, p)

Who Gets to Approximate?

Poisson approx. 
n large (> 20), 
p small (< 0.05)

If there is a choice, go with the normal approximation

Normal approx. 
n large (> 20), 
p is mid-ranged
np(1-p) > 10



• Stanford accepts 2050 students this year
§ Each accepted student has 84% chance of attending

§ X = # students who will attend.   X ~ Bin(2050, 0.84)

§ What is P(X > 1745)?

§ Use Normal approximation: Y ~ N(1722, 276)

Stanford Admissions

np = 1722 np(1� p) = 276
p

np(1� p) = 16.6

P (Y � 1745.5) = P
�Y � 1722

16.6
>

1745.5� 1722

16.6

�
= P (Z > 1.4)

P (X > 1745) ⇡ P (Y > 1745.5)

⇡ 0.08



Class of 2021 Admit Rates Lowest in University 
History

“Fewer students were admitted to the Class of 2021 than 
the Class of 2019, due to the increase in Stanford’s yield 
rate which has increased over 5 percent in the past four 
years, according to Colleen Lim M.A. ’80, Director of 
Undergraduate Admission.”

Changes in Stanford Admissions

68% 10 years ago 84% last year



Continuous Random Variables

Uniform Random Variable
All values of x between alpha and beta are equally likely.

Normal Random Variable
Aka Gaussian. Defined by mean and variance. Goldilocks distribution.

Exponential Random Variable
Time until an event happens. Parameterized by lambda (same as Poisson).

Beta Random Variable
How mysterious and curious. You must wait a few classes J.

X ⇠ Uni(↵,�)

X ⇠ N (µ,�2)

X ⇠ Exp(�)
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Joint Distributions



CS109 Joint

Go to this URL: https://goo.gl/Jh3Eu4



Four Prototypical Trajectories

Events occur with other events



Probability Table for Discrete
• States all possible outcomes with several discrete variables
• A probability table is not “parametric”
• If #variables is > 2, you can have a probability table, but you 

can’t draw it on a slide
All values of A

Al
l v

al
ue

s 
of

 B 0

P(A = 1, B = 1)1

2

0 1 2

Here “,” means “and”

Every 
outcome falls 
into a bucket



• For two discrete random variables X and Y, the            
Joint Probability Mass Function is:

• Marginal distributions:

• Example: X = value of die D1, Y = value of die D2
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Discrete Joint Mass Function



• Consider households in Silicon Valley
§ A household has X Macs and Y PCs
§ Can’t have more than 3 Macs or 3 PCs

X
Y 0 1 2 3 pY(y)

0 0.16 0.12 ? 0.04

1 0.12 0.14 0.12 0

2 0.07 0.12 0 0

3 0.04 0 0 0

pX(x)

A Computer (or Three) In Every House



• Consider households in Silicon Valley
§ A household has X Macs and Y PCs
§ Can’t have more than 3 Macs or 3 PCs

X
Y 0 1 2 3 pY(y)

0 0.16 0.12 0.07 0.04

1 0.12 0.14 0.12 0

2 0.07 0.12 0 0

3 0.04 0 0 0

pX(x)

A Computer (or Three) In Every House



• Consider households in Silicon Valley
§ A household has X Macs and Y PCs
§ Can’t have more than 3 Macs or 3 PCs

X
Y 0 1 2 3 pY(y)

0 0.16 0.12 0.07 0.04

1 0.12 0.14 0.12 0

2 0.07 0.12 0 0

3 0.04 0 0 0

pX(x)

A Computer (or Three) In Every House

X
Y 0 1 2 3 pY(y)

0 0.16 0.12 0.07 0.04 0.39

1 0.12 0.14 0.12 0 0.38

2 0.07 0.12 0 0 0.19

3 0.04 0 0 0 0.04

pX(x) 0.39 0.38 0.19 0.04 1.00

Marginal distributions



CS109 Joint Results

Go to this URL: https://goo.gl/Jh3Eu4
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Way Back



Permutations

How many ways are there to order n distinct objects?

n!



Binomial

How many ways are there to order n objects such that:
r are the same (indistinguishable)
(n – r) are the same (indistinguishable)?

How many ways are there to make an unordered 
selection of r objects from n objects?

n!

r!(n� r)!
=

✓
n

r

◆

Called the “binomial” because of something from Algebra



Multinomial

How many ways are there to order n objects such that:
n1 are the same (indistinguishable)
n2 are the same (indistinguishable)
…
nr are the same (indistinguishable)?

n!

n1!n2! . . . nr!

Note: Multinomial > Binomial

=

✓
n

n1, n2, . . . , nr

◆



• Consider n independent trials of Ber(p) rand. var.
§ X is number of successes in n trials
§ X is a Binomial Random Variable:  X ~ Bin(n, p)
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Binomial Distribution

Probability of 
exactly i
successes

Binomial # ways 
of ordering the 

successes

Probability of each 
ordering of i

successes is equal + 
mutually exclusive
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End Way Back



• Multinomial distribution
§ n independent trials of experiment performed
§ Each trial results in one of m outcomes, with        

respective probabilities: p1, p2, …, pm where
§ Xi = number of trials with outcome i

where                  and
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The Multinomial

Joint distribution Multinomial # ways of 
ordering the successes

Probabilities of each 
ordering are equal and 

mutually exclusive



• 6-sided die is rolled 7 times
§ Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

• This is generalization of Binomial distribution
§ Binomial: each trial had 2 possible outcomes
§ Multinomial: each trial has m possible outcomes
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Hello Die Rolls, My Old Friends



• Ignoring order of words, what is probability of any 
given word you write in English?
§ P(word = “the”) > P(word = “transatlantic”)
§ P(word = “Stanford”) > P(word = “Cal”)
§ Probability of each word is just multinomial distribution

• What about probability of those same words in 
someone else’s writing?
§ P(word = “probability” | writer = you) >

P(word = “probability” | writer = non-CS109 student)
§ After estimating P(word | writer) from known writings, 

use Bayes’ Theorem to determine P(writer | word) for 
new writings!

Probabilistic Text Analysis



According to the Global Language Monitor there are 988,968
words in the english language used on the internet.

The

A Document is a Large Multinomial



Example document:
“Pay for Viagra with a credit-card. Viagra is great. 
So are credit-cards. Risk free Viagra. Click for free.”
n = 18 

Text is a Multinomial

Viagra = 2
Free = 2
Risk = 1
Credit-card: 2
…
For = 2

P

✓
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2
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2
for

Probability of seeing 
this document | spam

It’s a Multinomial!

The probability of a word in 
spam email being viagra
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Who wrote the federalist papers?





• Authorship of “Federalist Papers”

§ 85 essays advocating ratification of 
US constitution

§ Written under pseudonym “Publius”
o Really, Alexander Hamilton, James 

Madison and John Jay

§ Who wrote which essays?
o Analyzed probability of words in each 

essay versus word distributions from 
known writings of three authors

Old and New Analysis
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Let’s write a program!


